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a b s t r a c t

A map is a 2-cell embedding of a connected graph into a closed
surface. A map is orientable if the supporting surface is orientable.
An orientable map is regular if its group of orientation-preserving
automorphisms acts transitively on the darts. Using an equivalent
algebraic description of regular maps and their coverings, we
employ the theory of group extensions to classify the almost totally
branched coverings of the platonicmapswith non-abelian covering
transformation groups, generalising the results of Hu, Nedela and
Wang.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A map M is an embedding i : X ↩→ S of a connected graph X into a closed surface S such that
each component of S \ i(X) is homeomorphic to an open disc. A map is orientable if its supporting
surface S is orientable; otherwise, it is called non-orientable. Throughout the paper, maps considered
are orientable. For simplicity, we also assume that they contain no semi-edges. An (orientation-
preserving) automorphism of a map M is an automorphism of the underlying graph X , regarded as a
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permutation of the darts preserving the graph incidence, which extends to an orientation-preserving
homeomorphismof the supporting surface. It iswell known that the groupAut (M) of automorphisms
has a semi-regular action on the darts ofM. If this action is transitive, and hence regular, then themap
M is called regular.

Themost prominent examples of regularmaps are the platonic maps on the sphere. They have type
{n,m}, meaning that all faces are n-gons and all vertices have valency m, where m and n are integers
greater than 1 such that 1/m + 1/n > 1/2. One of the nice features of the platonic maps is that there
is only one regular map of each type.

As one of the central problems in topological graph theory, the classification of regular maps has
been intensively investigated, typically by imposing certain conditions on the supporting surfaces,
the embedded graphs or the underlying automorphism groups; see [18] for a survey. Another
different approach to this problem is to construct and classify regular maps arising from regular
coverings over a given regular map [5,6,9,11,13–17,19,20]. In this direction, regular coverings over
the platonic maps have received particular attention. In the early stage, this was mostly investigated
in the context of certain extensions of polyhedral groups [3,14,16]. In 1970s, Biggs [1] and Gross [4]
independently developed a new approach to this problem under different names. The first is known
as the homological method and the other is the voltage method. As pointed out by Surowski and
Schroeder the second is just an ‘‘embryonic form’’ of the first [20].

The cyclic regular coverings of the platonic maps, branched exclusively over the face-centres or
over the vertices, are classified in [11,19]. The self-dual cyclic regular coverings of the tetrahedralmap,
branched simultaneously over the face-centres and over the vertices, are classified in [17, Theorem
7]. The abelian regular coverings over the platonic maps have been studied by Jones in [9]. Recently,
a complete classification of cyclic regular coverings over the platonic maps, possibly branched
simultaneously over the face-centres and over the vertices, has been obtained in [6, Theorem 15].

In [6], the authors have indeed investigated a broader family of coverings called almost totally
branched coverings between regular maps. They showed that the covering transformation group of
an almost totally branched covering is a metacyclic group of rank at most 2, either abelian or non-
abelian [6, Lemma 10]. In that paper, the abelian almost totally branched coverings of the platonic
maps are classified [6, Theorem 15]. In this note, we present a classification of non-abelian almost
totally branched coverings over the platonic maps.

2. Almost totally branched coverings

In this section, the algebraic theory of regular maps and coverings between them developed by
Jones and Singerman in [10] is briefly outlined.

For a regular map M of type {n,m}, let x and y, respectively, generate the cyclic stabilisers of a
vertex v and an edge e incident with v. Then z = (xy)−1 generates the stabiliser of a face incident with
both v and e, and xm = y2 = zn = xyz = 1. It follows from the connectivity of the underlying graph of
M that Aut (M) = ⟨x, y⟩. Conversely, each generating pair (x, y) of a two-generated group G such that
y2 = 1 gives rise to a regularmapM with Aut (M) ∼= G:We identify the darts ofM with the elements
of the group G, and in the left regular representation ρ of G, the cycles of ρx and ρy are identified
with the vertices and edges of a connected graph X with incidence given by nonempty intersection.
The successive powers of ρx give the local rotation of the darts around each vertex, and these local
rotations determine an embedding of X into an oriented surface. The right regular representation of G
is identified with the automorphism group of M. Therefore, regular maps M correspond to algebraic
maps, that is, triples (G, x, y) where G = ⟨x, y⟩ and y2 = 1.

The topological notion of a ‘‘covering’’ between regular maps can be described algebraically. In
particular, if a covering has branch points at vertices and at face-centres simultaneously, then it will
be more convenient to replace the triple (G, x, y), y2 = 1, with the triple (G, x, z) where z = (xy)−1

so that (xz)2 = 1. Let N = (G1, x1, z1) and M = (G2, x2, z2) be regular maps. We say that N is a
(regular) covering of M if the assignment π : x1 → x2, z1 → z2 extends to an epimorphism from
G1 onto G2. The kernel is called the group of covering transformations and is denoted by CT (π). In
particular, N is isomorphic to M if π extends to a group isomorphism. Therefore, for a given regular
map M = (G2, x2, z2), the determination of regular coverings N = (G1, x1, z1) of M with a covering
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Fig. 1. Decomposition of an almost totally branched covering.

transformation group isomorphic to a groupK is reduced to the determination of particular extensions
of the group G2 by K .

If M = (G, x, z) is a regular map, the mirror image of M is the regular map M−1
= (G, x−1, z−1),

and the dual of M is the map M∗
= (G, z, x). Then M is reflexible if M ∼= M−1; otherwise,

it is chiral; M is self-dual if M ∼= M∗. It follows that reflexible (resp. self-dual) regular maps M
with Aut (M) ∼= G correspond to invertible (resp. transpositional) generating pairs (x, z), that is, the
assignment ι : x → x−1, z → z−1 (resp. τ : x → z, z → x) extends to an automorphism of G. For a
given reflexible (resp. self-dual) regular map M = (G, x, z), if N is an ι-invariant (resp. τ -invariant)
normal subgroup of G, then the quotient regular map M̄ = (G/N, xN, yN) is also reflexible (resp. self-
dual) [7, Proposition 3].

Assume that the base map M has type {n,m}. Then the covering transformation group CT (π)
contains both A = ⟨xm1 ⟩ and B = ⟨zn1⟩. The covering is branched at vertices if and only if A > 1, and
branched at faces if and only if B > 1. In the extremal cases that CT (π) = A or CT (π) = B, the covering
is called totally branched at vertices or totally branched at faces, respectively. Combinatorially speaking,
the covering is totally branched at vertices (resp. at faces) if and only if every vertex (resp. every face)
of M has precisely one preimage [6, Proposition 4]. A covering is called totally branched if it is both
totally branched at vertices and totally branched at faces. More generally, the covering is called almost
totally branched if A E G, B E G and CT (π) = AB. Define

h = |A ∩ B|, p = |A/A ∩ B| and q = |B/A ∩ B|. (1)

Since A, B E G and A∩B = ⟨znq1 ⟩ = ⟨xmp
1 ⟩, there exist integers eV ∈ Z∗

ph, eF ∈ Z∗

qh and e ∈ Z∗

h such that

(xm1 )z1 = (xm1 )eV , (zn1)
x1 = (zn1)

eF and znq1 = (xmp
1 )e. (2)

The 6-tuple (p, q, h, eV , eF , e) associated with an almost totally branched covering is called the
index-exponent 6-tuple of the covering. Note that the number ph (resp. qh) is the branch index of the
covering at branch points over vertices (resp. face-centres).

An almost totally branched covering π : N → M between two regular maps is a composition of
several extremal subcoverings [6, Proposition 7]. More precisely, let MF = N /B, MV = N /A and
MF ∨ MV = N /A ∩ B. Then the covering π0 : N → MF ∨ MV is totally branched, the coverings
π1 : MF ∨ MV → MF and π4 : MV → M are totally branched at faces and smooth at vertices, the
coverings π2 : MF ∨ MV → MV and π3 : MF → M are totally branched at vertices and smooth at
faces. In particular, the diagram in Fig. 1 commutes.

In what follows, let X (m) denote a graph of multiplicity m obtained from a simple graph X by
replacing each of the edges withm parallel edges.

Example 1. In the simplest case,M is the tetrahedralmap T of type {3, 3}with the complete graph K4
of order 4 as its underlying graph. The 2-sheeted regular covering of T of type {6, 3}, totally branched
at faces and smooth at vertices, is a regular embedding Q = MV of the 3-dimensional cube Q3 into
the torus [11, Theorem 1]. Since T is self-dual, the dual map Q∗

= MF of Q is a 2-sheeted regular
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Fig. 2. The torus maps Q and Q∗ .

covering of T of genus 1 and of type {3, 6}, totally branched at vertices and smooth at faces. It is a
regular embedding of the graph K (2)

4 . These maps are shown in Fig. 2; in each case opposite sides of
the outer hexagon are identified to form a torus, and the covering of T is induced by a half-turn about
the centre of the hexagon.

The join Q ∨ Q∗ is the smallest regular map covering both Q and Q∗. This is a regular covering of
T , of genus 5, appearing as entry R5.10 in Conder’s list of regular maps [2]. It has underlying graph
Q (2)
3 and automorphism group given by the presentation

⟨x, z | x6 = (xz)2 = z6 = [x3, z] = [x, z3] = 1⟩.

This map is a 4-sheeted abelian almost totally branched covering of T with the covering transforma-
tion group given by ⟨x3, z3⟩ ∼= Z2 ⊕ Z2. Further, we may construct two non-isomorphic 2-sheeted
totally branched coverings N (r) (r = 1, 3) over the map Q ∨ Q∗ with their automorphism groups
given by the presentation

⟨x, z | x12 = (xz)2 = 1, (x3)z = x3r , (z3)x = z3r , z6 = x6⟩.

These are regular embeddings of Q (4)
3 , corresponding to Conder’s maps R17.34 and R17.35 [2]. It is

easily seen that both N (1) → T and N (3) → T are almost totally branched coverings, with the
covering transformation groups isomorphic to Z2 ⊕ Z4 and Q8 respectively.

The following lemma describes the structure of the covering transformation group of an almost
totally branched covering; see [6] for its proof.

Lemma 1 ([6, Lemma 10]). Let M be a regular map of type {n,m}, and let π : N → M be an almost
totally branched covering of M whereN = (G, x, z), with the associated index-exponent 6-tuple (p, q, h,
eV , eF , e) where gcd(e, h) = 1; let a = xm and b = zn. If the covering transformation group CT (π) is
non-abelian, then both m and n are odd, p, q and h are all even,

eF ≡ 1 +
qh
2

(mod qh) and eV ≡ 1 +
ph
2

(mod ph), (3)

and CT (π) has a presentation

⟨a, b | aph = bqh = 1, ba = b1+
qh
2 , ab = a1+

ph
2 , bq = ape⟩. (4)

Remark 1. Letπ : N → M be an almost totally branched covering between two regular mapswhere
N = (G, x, z). If the underlying graphs ofM and its dualM∗ are both simple graphs, thenA = coreG⟨x⟩
and B = coreG⟨z⟩, namely the cores of ⟨x⟩ and ⟨z⟩ in G = Aut (N ) [12]. It follows that the underlying
graphs of the maps N and its dual N ∗ have multiplicity mV = |A| and mF = |B| [6, Proposition 4].
The pair (mF ,mV ) is called themultiplicity type of N , or simply M-type of N .

The following lemma deals with the reflexibility and self-duality of the regular maps in an almost
totally branched covering.
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Lemma 2. Let M be a regularmap of type {n,m}, and let N → M be an almost totally branched covering
of M with an index-exponent 6-tuple (p, q, h, eV , eF , e).
(i) If N is reflexible, then so is M;
(ii) Assume that both M and its dual map M∗ have simple underlying graphs. If N is self-dual, then so is

M. In particular,

m = n, p = q, eV = eF and e2 ≡ 1 (mod h).

Proof. Let N = (G1, x1, z1) and K = ⟨xm1 , zn1⟩. Then K is the covering transformation group with the
relations in (2) satisfied by x1 and z1. Let w = w(xm1 , zn1) be any word in K . Since K is metacyclic, there
exist some integers i and j such that w = (xm1 )i(zn1)

j.
(i) We have ι(w) = (x−m

1 )i(z−n
1 )j ∈ K . Hence K ι

= K , that is, K is an ι-invariant normal subgroup
of G1. Consequently, since M ∼= N /K and N is reflexible, M is also reflexible.

(ii) By the assumption, both M and its dual M∗ have simple underlying graphs. By Remark 1,
CoreG1⟨x1⟩ = ⟨xm1 ⟩ and CoreG1⟨z1⟩ = ⟨zn1⟩. SinceN is self-dual, G1 has an automorphism τ transposing
x1 and z1, so m = n and o(x1) = o(z1). We have τ(w) = τ((xm1 )i(zm1 )j) = (zm1 )i(xm1 )j ∈ K . So K is a
τ -invariant normal subgroup of G1. Consequently, since M = N /K and N is self-dual, M is also
self-dual.

Recall that o(x1) = mph and o(z1) = nqh. Since o(x1) = o(z1), we have p = q. By comparing
the first two relations in (2) we have eV = eF . Moreover, by applying τ to the last relation in (2) we
obtain xmp

1 = zmpe
1 . Substituting xmpe

1 for zmp
1 we get xmp

1 = zmpe
1 = xmpe2

1 . Hence xmp(e2−1)
1 = 1. Since

o(x1) = mph, we get e2 ≡ 1 (mod h), as required. �

3. Classification

In this section, we employ the theory of group extensions to classify the non-abelian almost totally
branched coverings over the platonic maps.

Recall that the platonic maps are regular maps of types {n,m} where m, n ≥ 2 such that
1/n + 1/m > 1/2. Their data are summarised in Table 1.

Table 1
The platonic maps.

Map Type M-Type |V | |F | Aut.

Tetrahedral map {3, 3} (1, 1) 4 4 A4
Cube {4, 3} (1, 1) 8 6 S4
Octahedral map {3, 4} (1, 1) 6 8 S4
Icosahedral map {5, 3} (1, 1) 12 20 A5
Dodecahedral map {3, 5} (1, 1) 20 12 A5
Dihedral map {n, 2} (n, 1) n 2 D2n
Hosohedral map {2, n} (1, n) 2 n D2n

The following proposition on cyclic extensions of groups will be useful.

Proposition 3 ([8, Theorem 3.36]). Let K and Q be groups, where Q is cyclic of order m, let a ∈ K and
σ ∈ Aut (K). Assume that

aσ
= a and xσm

= xa, for all x ∈ K .

Then there exist an extension G of Q by K , unique up to isomorphism, and an element g ∈ G with the
following properties:
(i) G/K = ⟨gK⟩ ∼= Q ,
(ii) gm

= a,
(iii) xσ

= xg .

The following theorem classifies the non-abelian almost totally branched coverings over the
platonic maps.
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Theorem 4. In the family of platonic maps, only the tetrahedral map, the icosahedral map and the
dodecahedral map admit non-abelian almost totally branched coverings. Moreover, the isomorphism
classes of non-abelian almost totally branched coverings N over an admissible platonic map M of type
{n,m} are in one-to-one correspondence with the quadruples (p, q, h, e) of positive integers satisfying the
following conditions:

(i) p, q and h are all even,
(ii) p divides |V | and q divides |F |, where |V | and |F | denote the numbers of vertices and faces of M,
(iii) |F |

q e +
|V |

p ≡ 0 (mod h) and e ∈ Z∗

h .

The group Aut (N ) has a presentation

⟨x, z | xmph
= (xz)2 = znqh = 1, (xm)z = xm(1+ph/2), (zn)x = zn(1+qh/2), znq = xmpe

⟩ (5)

with Aut (N )/K ∼= Aut (M) where K = ⟨xm, zn⟩.
In particular, all such covers are reflexible, and the covers over the tetrahedral map are all self-dual,

whereas none of the covers over the dodecahedral map or over the icosahedral map are self-dual.

Proof. By Lemma 1, if M admits a non-abelian almost totally branched cover N , then both n and m
are odd. Checking the types of the platonicmaps,we see that only the tetrahedralmap, the icosahedral
map and the dodecahedral mapmay admit non-abelian almost totally branched coverings. Therefore,
by duality, it is sufficient to classify such covers over the tetrahedral map and the icosahedral map.

Let M = (G2, x2, z2), N = (G, x, z), a = xm and b = zn. Since the covering is almost totally
branched, the assignment x → x2, z → z2 extends to an epimorphism from G onto G2 with a
covering transformation group K : = AB where A = ⟨a⟩ and B = ⟨b⟩ are normal subgroups of G.
By Lemma 1, p, q and h are even, eF = 1 + qh/2, eV = 1 + ph/2 and gcd(e, h) = 1, and the covering
transformation group K has a presentation (4) where the integers p, q, h, eF , eV and e are defined by
(1) and (2). Therefore, by the theory of group extensions, the group G has a presentation (5).

In what follows, for each case we shall construct a chain of subnormal subgroups of G and then
employ the theory of cyclic extensions of groups to derive the numerical conditions (ii) and (iii) stated
in the theorem.

Case (1). Let the base map be the tetrahedral map of type {3, 3}.
Let c1 = z2x2 and c2 = zx, and define N1 = ⟨K , c1⟩ and N2 = ⟨N1, c2⟩. Then G = ⟨N2, x⟩. Since

x3 = a, c22 = (zx)2 = 1,

c21 =(z2x2)2 = (z3z−1x−1x3)2 = (z3x3eV z−1x−1)2 = b1+eF a2 (6)

and

cc21 = x−1zx2zx = x−1zxz−1
= x−2z−2

= c−1
1 , (7)

cx1 = x−1z2x3 = x−1z−1ba = c−1
2 ba, (8)

cx2 = x−1zx2 = x−1z−1(z2x2) = c−1
2 c1, (9)

G has a chain of subnormal subgroups 1 E K E N1 E N2 E G such that

N1/K = ⟨c1K⟩ ∼= Z2, N2/N1 = ⟨c2N1⟩ ∼= Z2, G/N2 = ⟨xN2⟩ ∼= Z3.

By (7) and (6), we have

(cc21 )2 = c−2
1 = b−(1+eF )a−2

and

(c21 )
c2 = (b1+eF a2)c2 = (bc2)1+eF (ac2)2 = b1+eF a2eV .

Since (cc21 )2 = (c21 )
c2 , by equating the right hand sides of the above equations, we obtain that

b2(1+eF )
= a−2(1+eV ). Recall that eF = 1 + qh/2 and eV = 1 + ph/2. Upon substitution we get

b4+qh
= a−4−ph. (10)
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Since ⟨a⟩ ∩ ⟨b⟩ = ⟨bq⟩ = ⟨ap⟩, we obtain

4 ≡ 0 (mod q) and 4 ≡ 0 (mod p). (11)

Recall that bq = ape. Upon substitution (10) is reduced to

a−4−ph
= b4+qh

= (bq)4/q+h
= (ape)4/q+h.

Consequently ap(4/p+4e/q+(e+1)h)
= 1. Since a has order ph, we obtain

4e/q + 4/p ≡ 0 (mod h). (12)

Note that the group G has an alternative presentation

G = ⟨a, b, c1, c2, x | aph = bqh = 1, ba = b1+qh/2, ab = a1+ph/2,

bq = ape, c21 = b2+qh/2a2, bc1 = b, ac1 = a, c22 = 1, ac2 = a1+ph/2,

bc2 = b1+qh/2, cc21 = c−1
1 , x3 = a, ax = a, bx = b1+qh/2,

cx1 = ab1+qh/2c−1
2 , cx2 = c−1

2 c1⟩. (13)

Conversely, given a group G defined by (5) where m = n = 3 and p, q and h are positive
even integers, e ∈ Z∗

h , and they satisfy the conditions (11) and (12), by applying Proposition 3 it
is straightforward to verify that G is a well-defined extension of the group G2 by K . In particular,
|G| = 3|N2| = 6|N1| = 12|K | = 12pqh. It is easily seen from the presentation that the map (G, x, z) is
a non-abelian almost totally branched cover over the tetrahedralmapwith an index-exponent 6-tuple
(p, q, h, 1 + ph/2, 1 + qh/2, e).

Case (2). Let the base map be the icosahedral map of type {3, 5}.
Let c1 = (xz)x

−2
(xz)x

−1
and c2 = (xz)x

−1
, and define N1 = ⟨K , c1⟩ and N2 = ⟨N1, c2⟩. We deduce

from (2) that

bc1 = b, ac1 = a, bc2 = beF and ac2 = aeV . (14)

Note that using the commuting rules in (2) and the fact that z−1x−1
= xz the element c1 can be

simplified as follows:

c1 = x3z2x−1
= x3b(z−1x−1) = beF x4z = beF ax−1z (15)

= beF a(x−1z−1)z−1b = b1+eF a(zxz−1). (16)

We have

cc21 = xz−2x−3
= xzz−3x−3

= b−eF xzx−3
= b−eF z−1xx−5

= b−eF a−eV z−1x

= b−eF a−eV c−1
1 beF a = c−1

1 by (15) (17)

and

c51 = (b1+eF azxz−1)5 = b5(1+eF )a5+eV . by (16) (18)

Combining these with (14) we see that the subgroup N2 has a chain of normal subgroups 1 E K E
N1 E N2 such that

N1/K = ⟨c1K⟩ ∼= Z5, N2/N1 = ⟨c2N1⟩ ∼= Z2.

By (17) and (18) and using (14) when necessary we deduce that

(c51 )
c2 = (b5(1+eF )a5+eV )c2 = b5(1+eF )a5eV +1

and

(cc21 )5 = c−5
1 = a−5−eV b−5(1+eF ) (2)

= b−5(1+eF )a−5−eV .
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Since (c51 )
c2 = (cc21 )5, we get a6(eV +1)

= b−10(eF+1). Recall that eF = 1 + qh/2 and eV = 1 + ph/2.
Upon substitution we obtain

a12 = b−20. (19)

Recall that ⟨a⟩ ∩ ⟨b⟩ = ⟨bq⟩ = ⟨ap⟩. We deduce from (19) that

20 ≡ 0 (mod q) and 12 ≡ 0 (mod p). (20)

Since bq = ape, substituting bq for ape in (19) we obtain

a12 = b−20
= (bq)−20/q

= a−20ep/q.

Hence ap(20e/q+12/p)
= 1. Since a has order ph, we get

20e/q + 12/p ≡ 0 (mod h). (21)

Let H be the group defined by the presentation

⟨x, z | (xz)2 = z3qh = x5ph = 1, (z3)x = z3(1+qh/2), (x5)z = x5(1+ph/2), z3q = x5pe⟩, (22)

where the parameters p, q and h are even, gcd(e, h) = 1 and they satisfy (20) and (21). Clearly, G
satisfies all the defining relations of H . It follows that G is a quotient of H . Define T = ⟨x5, z3⟩. We see
from the presentation of H that T E H and H/T ∼= A5, so |H| = |T ||A5| ≤ |G|. Therefore G ∼= H . Note
that the above discussion shows that N2 is a subgroup of G of index 6 constructed by a sequence of
cyclic extensions. It has a presentation

N2 = ⟨a, b, c1, c2 | aph = bqh = 1, ab = a1+ph/2, ba = b1+qh/2, bq = ape,
c51 = b5(2+ph/2)a5(1+ph/2)+1, ac1 = a, bc1 = b,

c22 = 1, ac2 = a1+ph/2, bc2 = b1+qh/2, cc21 = b−qh/2a−ph/2c−1
1 ⟩. (23)

Conversely, given a group G defined by (22) with the stated numerical conditions satisfied by
the parameters, to show that G is a well-defined extension of G2 ∼= A5 by K we need to show
that |G| = 60qph. By applying Proposition 3 it is straightforward to verify that the group N2 given
by (23) is a subgroup of G of order 10qph. It is therefore sufficient to prove that [G : N2] = 6. It
is clear that xi ∉ N2 (i = 1, 2, 3, 4) and z, z−1

∉ N2. We deduce from the presentation of G that
x−1z = a−1b−eF c1 ∈ N2 (cf. (15)). Hence xN2 = zN2. Moreover, if z−1N2 = xiN2 for some i, 1 ≤ i ≤ 4,
then zxi ∈ N2. Since x−1z ∈ N2, we have (x−1z)(zxi) ∈ N2. But

(x−1z)(zxi)N2 = x−1z−1z3xiN2 = zxi+1(x−ibxi)N2 = zxi+1N2,

so zxi+1
∈ N2. By induction, we deduce that z ∈ N2, a contradiction. Therefore,

N2, xN2, x2N2, x3N2, x4N2, z−1N2

are distinct left cosets ofN2 inG. Consequently [G : N2] = 6.Moreover, it is easily seen that the regular
map (G, x, z) is a non-abelian almost totally branched cover over the icosahedral map. This deals with
case (2).

In case (1) and case (2), let (pi, qi, hi, ei) be the quadruples corresponding to two coverings Ni over
a common base map where the groups Aut (Ni) (i = 1, 2) are given by the presentation (5). Using
the fact that group isomorphisms preserve defining relations, we deduce that N1 ∼= N2 if and only
if p1 = p2, q1 = q2, h1 = h2 and e1 ≡ e2 (mod h1). In particular, for each such cover N , since the
assignment x → x−1, z → z−1 extends to an automorphism of G, the map N is reflexible.

Finally, if N is self-dual, then by Lemma 2 the base map M is self-dual as well, implying that M
is the tetrahedral map. In this case, by Lemma 2, we have p = q and e2 ≡ 1 (mod h). Conversely,
it is straightforward to verify that if p = q and e2 ≡ 1 (mod h), then the non-abelian almost totally
branched covering N over the tetrahedral map is a self-dual map. Recall that p, q and h are even. By
(11), p, q ∈ {2, 4}. If p = q = 4, then e = h− 1; if p = q = 2 and h ≡ 0 (mod 4), then e = h/2− 1 or
e = h − 1; if p = q = 2 and h ≡ 2 (mod 4), then e = h − 1. In each case, e2 ≡ 1 (mod h). Therefore
the coverings are all self-dual, as claimed. �
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The following corollary follows from the Euler–Poincaré formula and [6, Proposition 4] (see also
Remark 1).

Corollary 5. The map N in Theorem 4 has type {nqh,mph}, multiplicity type (qh, ph) and genus

g =
mnpqh − 2nq − 2mp

2m + 2n − mn
+ 1.

4. Enumeration

Let M represent a fixed admissible platonic map, that is, M is the tetrahedral map, the icosahedral
map, or the dodecahedral map, and let N be a non-abelian almost totally branched covering of M.
By Corollary 5, the genus g of N depends only on the variables p, q and h. Therefore, the number µ
of maps N with a fixed triple (p, q, h) is equal to the number of values of e satisfying Theorem 4(iii).
In this section, we first determine the admissible values of the triples (p, q, h), and then compute the
number µ.

Before proceeding we prove a number-theoretic result for future reference.

Lemma 6. Let p be a prime. Then the linear congruence

ax ≡ b (mod pe) (24)

is solvable in Z∗

pe if and only if gcd(a, pe) = gcd(b, pe), in which case the number of solutions is
ϕ(pe)/ϕ(pe/ gcd(a, pe)) where ϕ is the Euler’s totient function.

Proof. Let gcd(a, pe) = pd and gcd(b, pe) = pd
′

. If (24) has a solution x0 where gcd(x0, p) = 1, then
d = d′. Conversely, if d = d′, then (24) is reduced to

ux ≡ v (mod pe−d), (25)

where u := a/pd and v := b/pd are both invertible in Zpe−d . Then x0 = v/u is the unique invertible
solution of the congruence (25). It lifts to pd invertible solutions of the form x0+ ipe−d (0 ≤ i ≤ pd−1)
of the congruence (24) in Zpe . �

Theorem 7. Let a and b be integers, and let n be a positive integer. Then the linear congruence

ax ≡ b (mod n) (26)

is solvable inZ∗
n if and only if gcd(a, n) = gcd(b, n), inwhich case the number of solutions isϕ(n)/ϕ(n/c),

where c = gcd(a, n) and ϕ is the Euler’s totient function.

Proof. Let n =
r

i=1 p
er
r be the prime power factorisation of n. By the Chinese Remainder Theorem,

(26) is solvable in Z∗
n if and only if the congruence ax ≡ b (mod peii ) is solvable in Z∗

p
ei
i
for each pi

(1 ≤ i ≤ r). By Lemma 6, this is equivalent to that gcd(a, peii ) = gcd(b, peii ). Note that gcd(a, n) =r
i=1 gcd(a, p

ei
i ) and gcd(b, n) =

r
i=1 gcd(b, p

ei
i ). Therefore (26) is solvable in Z∗

n if and only if
gcd(a, n) = gcd(b, n), in which case, by Lemma 6, it has

r
i=1

ϕ(pei)
ϕ(pei/ gcd(a, pei))

=

ϕ(
r

i=1
pei)

ϕ(
r

i=1
pei/

r
i=1

gcd(a, pei))
=

ϕ(n)
ϕ(n/c)

solutions, as claimed. �

The following theoremdetermines the quadruples (p, q, h, e) corresponding to non-abelian almost
totally branched coverings over an admissible platonic map M. By Theorem 4 and duality, it is
sufficient to state the result when M is the tetrahedral map or the icosahedral map.
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Table 2
Almost totally branched covers over T .

q p h ∈ Z+ e ∈ Z∗

h g µ

2 2 2 (mod 4) h − 1 12h − 7 1
2 2 0 (mod 4) h/2 − 1, h − 1 12h − 7 2
4 4 0 (mod 2) h − 1 48h − 15 1

Table 3
Almost totally branched covers over I.

q p h ∈ Z+ e ∈ Z∗

h g µ

2 2 ±2, ±14 ±34, ±38 (mod 60) 5e + 3 ≡ 0 (mod h/2) 60h − 31 1
2 2 ±4, ±8 ±16, ±32 (mod 60) 5e + 3 ≡ 0 (mod h/2) 60h − 31 2
2 6 ±2, ±6 (mod 20) 5e + 1 ≡ 0 (mod h/2) 180h − 71 1
2 6 ±4, ±8 (mod 20) 5e + 1 ≡ 0 (mod h/2) 180h − 71 2
4 4 ±2, ±4, ±8, ±14 (mod 30) 5e + 3 ≡ 0 (mod h) 240h − 63 1
4 12 ±2, ±4 (mod 10) 5e + 1 ≡ 0 (mod h) 720h − 141 1

10 2 ±2 (mod 12) h − 3 300h − 79 1
10 2 ±4 (mod 12) h − 3, h/2 − 3 300h − 79 2
10 6 2 (mod 4) h − 1 900h − 119 1
10 6 0 (mod 4) h − 1, h/2 − 1 900h − 119 2
20 4 ±2 (mod 6) h − 3 1200h − 159 1
20 12 0 (mod 2) h − 1 3600h − 239 1

Theorem 8. The quadruples (p, q, h, e) corresponding to non-abelian almost totally branched coverings
N over the tetrahedral map T or the icosahedral map I are summarised in Tables 2 and 3, where g denotes
the genus of N and µ is the number of maps N with a given triple (p, q, h).

Proof. First let M = T . By Theorem 4, the cover N over M corresponds to a quadruple (p, q, h, e)
where p, q and h are even positive numbers, e ∈ Z∗

h and these parameters satisfy the congruences (11)
and (12). By Theorem 4(i)–(iii), we have either q = p = 2 or q = p = 4. In the first case, (12) is
reduced to

2(e + 1) ≡ 0 (mod h). (27)

By Theorem 7, (27) has ϕ(h)/ϕ(h/2) solutions e ∈ Z∗

h . It is easily seen that ϕ(h)/ϕ(h/2) = 1 if
h ≡ 2 (mod 4), and ϕ(h)/ϕ(h/2) = 2 if h ≡ 0 (mod 4). Similarly, in the other case, (12) is reduced to

e + 1 ≡ 0 (mod h),

which has a unique solution e = h − 1 in Z∗

h .
Now let M = I. By Theorem 4(i)–(ii), the pair (q, p) takes the value (2, 2), (2, 6), (4, 4), (4, 12),

(10, 2), (10, 6), (20, 4) or (20, 12). For each such pair, by applying Theorem 7 we obtain the values
of h, and the number of solutions e ∈ Z∗

h of (21). �

Remark 2. By Theorem 8, the non-abelian almost totally branched coverings over the tetrahedral
map have 4q vertices and 4p faces where p, q ∈ {2, 4}, and those over the icosahedral map have 12q
vertices and 20p faces where p ∈ {2, 4, 6, 12} and q ∈ {2, 4, 10, 20}. Therefore, though the number
of non-abelian almost totally branched coverings N over each admissible platonic map is infinite,
both the number of vertices and the number of faces of N are bounded above. This is also true for the
abelian almost totally branched coverings over the same maps [6, Theorem 15].
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